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Abstract

The onset of buoyancy-driven convection in plane Couette flow heated uniformly from below is analyzed theo-

retically. For the thermal entrance region with Raq � 816:7, a new set of stability equations involving streamwise

variations of disturbances are derived based on the linear theory, the scaling relations and the extended momentary

instability concept. It is shown that the critical Rayleigh number that marks the onset of longitudinal vortex rolls

increases with a decrease in Prandtl number. Based on the present stability criteria a new mixed convection heat transfer

correlation is derived for the whole range of Rayleigh number. The present analysis predicts the available experimental

data of water, quite well.
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1. Introduction

It is well known that buoyancy-driven secondary flow

can play an important role in many engineering prob-

lems, such as chemical vapor deposition (CVD) and

cooling of electronic equipments [1–3]. For a large P�eclet
number the secondary flow in the form of longitudinal

vortex rolls has been observed in many of mixed con-

vection experiments [4–9]. For the case of the thermal

entrance region of uniformly heated plane Couette flow,

Hung and Davis [10] first attempted to predict the onset

of secondary vortex rolls by employing local stability

theory where the basic temperature is frozen at each

local position in the main flow direction. The streamwise

variations of disturbances were first considered by Shin

and Choi [11], and Choi et al. [12] proposed propagation

theory by improving their previous approach. In prop-
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agation theory the thermal boundary-layer thickness

was employed as a new characteristic length scaling

factor and the disturbed quantities were transformed

similarly. Choi and Kim [13,14] extended Choi et al.’s

[12] original concept to the whole range of the Prandtl

number and showed that for regular longitudinal vortex

rolls the system becomes more unstable as the Prandtl

number increases. Recently, Kim et al. [8,15] applied

propagation theory to the plane Poiseuille flow heated

from below. Their prediction compared reasonably with

the existing experimental data.

To determine the critical conditions of time-depen-

dent or axial-dependent convective instability problem,

several criteria such as absolute, marginal and momen-

tary criterion were suggested. An absolute stability

criterion suggest the flow is unstable when or where the

growth rate of disturbance energy is zero. In a marginal

stability criterion, the flow is considered unstable when

or where the disturbance energy reached its initial

amplitude. Theses two criteria seems to be suitable for

the initial-value approach such as amplification theory

[16,17], where arbitrary initial disturbances are assumed
ed.
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Nomenclature

a dimensionless wave number

d fluid layer thickness

k thermal conductivity

Nu Nusselt number, qwd=ðkDT Þ
P Pressure

p dimensionless pressure disturbance

Pe P�eclet number, Uavd=a
Pr Prandtl number, m=a
qw bottom wall heat flux

Raq Rayleigh number, gbqwd4=ðkamÞ
Re Reynolds number, Uavd=m
T temperature

ðU ; V ;W Þ velocities in Cartesian coordinates

ðu; v;wÞ dimensionless velocity disturbances in

Cartesian coordinates

ðX ; Y ; ZÞ Cartesian coordinates

ðx; y; zÞ dimensionless Cartesian coordinates

Greek symbols

a thermal diffusivity

DT thermal boundary-layer thickness

dT dimensionless thermal boundary-layer

thickness

f dimensionless similarity variable, z=x1=3

h dimensionless temperature disturbance,

gbd3T1=ðamÞ
h0 dimensionless basic temperature,

kðT0 � TiÞ=ðqwdÞ
k wave length of vortex roll

r temporal growth rate

m kinematic viscosity

s dimensionless time

Subscripts

0 basic quantities

1 perturbation quantities

c critical conditions

Superscript

� transformed quantities

Fig. 1. Schematic diagram of the present system.
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and their amplification are monitored. The last one

implies that the flow becomes unstable when or where

the growth rate of the perturbation quantity (r1) exceeds
that of the base flow (r0) [18].

Another important problem in natural convection

will be its heat transfer characteristics in the thermally

fully developed state. The possibility of connecting sta-

bility criteria to the heat transport on turbulent thermal

convection in rapidly heated horizontal fluid layers was

investigated by Howard [19] and modified by Busse [20].

Later, Long [21], Cheung [22] and Arpaci [23] proposed

a backbone equation to predict heat transport in hori-

zontal fluid layers by extending Howard’s concept. By

incorporating their stability criteria into the boundary-

layer instability model, Choi and his colleagues have

derived new heat transfer correlations for horizontal

fluid layers [24], fluid-saturated horizontal porous layers

[25] and plane Poiseuille flow [8] heated from below.

Their resulting heat transfer correlations are in good

agreement with a great deal of available experimental

data.

In the present study, the buoyancy effects on plane

Couette flow heated uniformly from below are analyzed

theoretically. The critical conditions of thermal insta-

bility on regular longitudinal vortex modes are sought

for the thermal entrance region with Raq � 816:7 and

fully developed mixed convection heat transport corre-

lation is derived for Raq P 816:7. Therefore, the present

study is the extension and complement of the previous

studies [8,11–15] for the buoyancy effects under the

laminar channel flow.
2. Stability analysis

2.1. Basic flow and temperature fields

The basic system considered here is the plane Couette

flow with a free upper boundary. The fluid layer of

depth ‘‘d’’ over a horizontal plate is heated from below

with constant heat flux qw. The upper boundary is kept

smooth at constant temperature Tr. The schematic dia-

gram of the base system is shown in Fig. 1. The flow and

temperature fields under forced convection can be ex-

pressed by the following dimensionless forms:

U 0 ¼ 2z ð1Þ

U 0

oh0
ox

¼ o2h0
oz2

þ 1

Pe2
o2h0
ox2

ð2Þ

with inlet and boundary conditions,

h0 ¼ 0 at x ¼ 0 and z ¼ 1 ð3Þ
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oh0
oz

¼ �1 at z ¼ 0 ð4Þ

where ðx; y; zÞ ¼ ðX=Pe; Y ; ZÞ=d, h0 ¼ kðT � TrÞ=ðqwdÞ,
and U 0 ¼ U0=U0;av. k denotes the thermal conductivity,

U0;av is the average velocity and the subscript ‘‘0’’ de-

notes the base state. For large P�eclet numbers, e.g.,

Peð¼ Uavd=aÞ > 100, the last term in Eq. (2) is negligible.

Then the Graetz-type solution, based on the method of

separation of variables, is obtained as follows:

h0 ¼ 1� z�
X1
n¼1

KnRnðzÞSnðzÞ ð5Þ

where

Kn ¼
34=3

Cð2=3Þl7=3
n J 2

2=3ð2ln=3Þ

Rn ¼ z1=2J�1=3ð2lnz
3=2=3Þ

Sn ¼ expð�l2
nx=2Þ

J�1=3ð2ln=3Þ ¼ 0

where JaðxÞ denotes the Bessel function of order a, and
CðxÞ the gamma function.

For x6 0:05 the following Leveque-type solution

agrees well with the above Graetz-type solution [17]:

h0 ¼
ð4:5xÞ1=3

Cð2=3Þ exp

�"
� z3

4:5x

�
� z

ð4:5xÞ1=3
C 2=3;

z3

4:5x

� �#

¼ x1=3h�0ðfÞ with dT ¼ 2:17x1=3c ð6Þ

where f ¼ z=x1=3. Here dT denotes the dimensionless

thermal boundary-layer thickness with h�0ðfÞ=h
�
0ð0Þ ¼

0:01, Cða;xÞ ¼
R1
x expð�tÞta�1 dt

� �
is an incomplete

gamma function. The derivation of Eqs. (5) and (6) are

described in the work of Choi [26].

2.2. Disturbance equations

By following the well-known linear stability analysis

the infinitesimal perturbation quantities are superim-

posed on the basic quantities. The disturbances are

usually assumed to be time-dependent, three-dimen-

sional ones. For example, the dimensionless vertical

velocity components w can be describe as

w ¼ w�ðx; y; zÞ exp½iðaxxþ ayyÞ þ rs� ð7Þ

where �i’ denotes the imaginary number, r the temporal

growth rate and s the dimensionless time. With the

longitudinal vortex roll the amplitude function w� be-

comes independent of spanwise distance y with ax ¼ 0

and r ¼ 0 while the transverse roll brings r 6¼ 0 with

ay ¼ 0. For a horizontal channel flow heated from below

Lin and his colleagues [2,3] conducted careful flow

visualization and transient temperature measurements
and showed that at a very low Reynolds number for

3:06Re6 5:0, transverse rolls of ax 6¼ 0 and r 6¼ 0 and

mixed transverse/longitudinal rolls were observed. Also,

they suggested the flow regime as a function of the

Reynolds number and the Rayleigh number. According

to their results and many other experimental results [1–

9,26], for large P�eclet number case, near the critical

position time-independent vortex rolls have been ob-

served experimentally. Therefore, for large P�eclet num-

bers the following disturbance equations can be

obtained in dimensionless form by invoking linear the-

ory under the Boussinesq approximation:

1

Pr
U 0

ou
ox

�
þ w

oU 0

oz

�
¼ o2u

oy2
þ o2u

oz2
ð8Þ

1

Pr
U 0

o3u
ox2oz

��
þ o3w
oxoz2

þ o3w
oxoy2

��

¼ o2

oy2

�
þ o2

oz2

�2

wþ o2h
oy2

þ o4u
oxoy2oz

þ o4w
oxoz3

ð9Þ

U 0

oh
ox

þ Raq u
oh0
ox

�
þ w

oh0
oz

�
¼ o2h

oy2
þ o2h

oz2
ð10Þ

with the boundary conditions,

u ¼ w ¼ ow
oz

¼ oh
oz

¼ 0 at z ¼ 0 ð11aÞ

u ¼ w ¼ o2w
oz2

¼ h ¼ 0 at z ¼ 1 ð11bÞ

where ðu;wÞ ¼ ðU1=Pe;W1Þd=a and h ¼ gbd3T1=ðamÞ. a
denotes the thermal diffusivity, g the gravity accelera-

tion, b the thermal expansivity, and m the kinematic

viscosity. It should be noted that the temperature dis-

turbance is nondimensionalized by am=ðgbd3Þ which is

widely used disturbance temperature scale rather than

DT [16]. Here, the Prandtl bumber Pr and Rayleigh

number based on the bottom heat flux qw, Raq are de-

fined as

Pr ¼ m
a

and Raq ¼
gbqwd4

kam
ð12Þ

To examine the thermal instability of the present system

we must find the minimum value of Raq to satisfy Eqs.

(8)–(11). Most of previous studies on this kind of sta-

bility problems have employed the assumption that

disturbances would not experience variations in the

streamwise direction, i.e. oð�Þ=ox ¼ 0. In the present

study this assumption is removed by employing our

propagation theory. This theory takes the streamwise

propagation of disturbances into consideration.

2.3. Propagation theory

The propagation theory employed to find the

dimensional critical streamwise position Xc to mark the
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onset of convective motion is based on the assumption

that disturbances are propagated mainly within the

dimensional thermal boundary-layer thickness DTð� dÞ
at Xc � DT. In this case the following scale analysis at

X � Xc would be valid for dimensionless perturbed

quantities of Eqs. (9) and (10), respectively.
w

d2T
� h ð13Þ

Raqw
oh0
oz

� h

d2T
ð14Þ

This means that buoyancy-driven convection occurs due

to h and this incipient secondary flow is very weak at

x ¼ xc. Because oh0=ozjx¼xc
has the magnitude of order of

1, Raqd
4
T is a constant for dT � 1 from the above rela-

tions. In this viewpoint the base temperature and its

perturbation have been nondimensionalized having dif-

ferent scales. The above scaling analysis describes in

depth in Kim et al.’s [15]. Based on the above relations,

the following relations can be obtained.

u ¼ xdnþ1
T u�; w ¼ dnþ2

T w� and h ¼ dnTh
� ð15Þ

At this stage the criterion to determine n is necessary.

Shen [18] suggested the momentary instability condition:

the temporal growth rate of the perturbation quantities

(r1) should exceed that of the base flow (r0). By

extending this conception into the present system, the

critical condition can be determined at a certain position

where r0 ¼ r1. In the present system the dimensionless

streamwise growth rates are defined as quantities of

temperature components:

r0 ¼
1

hh0i
dhh0i
dx

and r1 ¼
1

hh1i
dhh1i
dx

ð16Þ

where hquantityi ¼
R
AðquantityÞ

2
dA

� �
=A

h i1=2
and dA ¼

kdz. Here A denotes the cross sectional area of one

vortex roll pair in x–y plane. From the base temperature

distribution of Eq. (6), r0 can be obtained as:

r0 ¼
1

4x
for x ! 0: ð17Þ

For the case of n ¼ 1, the condition of r0 ¼ r1 is fullfiled
at x ¼ xc. If the laminar-forced convection is still dom-

inant with Ra� ¼ constant at x ¼ xc, it is probable that

hðx; zÞ ¼ x1=3h�ðfÞ. This means that the amplitude func-

tion of temperature disturbances follows the behavior of

h0 for small x.
Then for the longitudinal vortex rolls the disturbance

quantities are expressed as

uðx; y; zÞ
wðx; y; zÞ
hðx; y; zÞ

2
4

3
5 ¼

x5=3u�ðfÞ
xw�ðfÞ
x1=3h�ðfÞ

2
4

3
5 expðiayÞ ð18Þ

where the superscript ‘‘*’’ refers to the amplitude func-

tion. It is noted that the dimensionless thermal bound-
ary-layer thickness has the order of magnitude of x1=3

and each quantity in Eqs. (5), (6) and (21) is based on

this vertical length scale.

Substituting Eq. (18) into Eqs. (8)–(11), we can ob-

tain the new stability equations:

ðD2 � a�2Þu� ¼ 1

Pr
10

3
fu�

�
� 2

3
f2Du� þ 2w�

�
ð19Þ

ðD2 � a�2Þ2w�

¼ a�2h� � 2

3
D3u� þ 1

3
fD4u� þ 4

3
a�2Du� � 1

3
fa�2D2u�

þ 1

Pr
4

3

5

3
u�

��
� 1

3
fDu� þ Dw�

�

� 2

3
f2 Du�
�

� 1

3
fD3u� þ D3w�

�

� 2fa�2w� þ 2

3
f2a�2Dw�

�
; ð20Þ

ðD2 � a�2Þh� ¼ 2

3
fh� � 2

3
f2Dh� þ Ra� w�Dh�0

�

� 1

3
fu�Dh�0 þ

1

3
u�h�0

�
ð21Þ

with boundary conditions,

u� ¼ w� ¼ Dw� ¼ Dh� ¼ 0 at f ¼ 0 ð22aÞ

u� ¼ w� ¼ D2w� ¼ h� ¼ 0 as f ! 1 ð22bÞ

where D ¼ d
df, a� ¼ ax1=3, and Ra� ¼ Raqx4=3. The

parameters a� and Ra� based on the length scaling factor

x1=3 are assumed to be eigenvalues. Now, the principle of

exchange of stabilities is employed and the minimum

value of Ra� for a given Pr is sought. This whole pro-

cedure is the essence of our propagation theory.

The above stability equations are quite different from

those of Choi and Kim [14]. Without any deterministic

criterion they set n ¼ 0 in Eq. (15), that is the temper-

ature disturbances was set to hðx; zÞ ¼ h�ðfÞ and as-

sumed to be follow the behavior of h�0ðfÞ. This is the

major difference between the work of Choi and Kim [14]

and the present one. In the present study, based on the

momentary-instability concept the amplitude function

of temperature disturbances are assumed to follow the

behavior of h0 for small x.
2.4. Solution method

To find eigenvalues and eigenfunctions for differen-

tial equations, several methods such as compound ma-

trix method and shooting method are proposed [27]. In

the present study the stability Eqs. (19)–(22) are solved

by employing the latter method. For a specific value of

eigenvalue, many other eigenfunctions which are differ-

ent by constant ratio are possible. To determine the

eigenvalue, unprescribe initial value can be assigned
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Fig. 2. Neutral stability curve for Pr ¼ 7.

Table 1

Comparison of critical values for Pr ¼ 7

Theoretical results a�c Ra�c

Present study 0.98 55.90

Choi and Kim [14] 0.87 55.49
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arbitrarily. Thereby the boundary value problem is

converted as an initial value problem. This is the char-

acteristics of eigenvalue problem.

To integrate these stability equations the proper

values of Du�, D2w�, D3w� and h� at f ¼ 0 are assumed

for a given Pr and a�. Since the stability equations and

the boundary conditions are all homogeneous, the value

of D2w� at f ¼ 0 can be assigned arbitrarily and the

value of the parameter h� is assumed. After all the values

at f ¼ 0 are provided, this eigenvalue problem can be

proceeded numerically.

Integration is performed from the heated surface

f ¼ 0 to a fictitious outer boundary with the fourth

order Runge–Kutta–Gill method. If the guessed values

of Ra�, Du�ð0Þ, D3w�ð0Þ and h�ð0Þ are correct, u�, w�,

D2w� and h� will vanish at the outer boundary. To im-

prove the initial guesses the Newton–Raphson iteration

is used. When convergence is achieved, the outer

boundary is increased by predetermined value and the

above procedure is repeated. Since the disturbances de-

cay exponentially outside the thermal boundary layer,

the incremental change in Ra� also decays fast with an

increase in outer boundary depth. This behavior enables

us to extrapolate the eigenvalue Ra� to the infinite depth

by using Shank transform as

Ra�1 ¼ Ra�f3 þ
r

1� r
ðRa�f1 � Ra�f2 Þ ð23Þ

where Ra�1 is the value of Ra� extrapolated to the infinite

depth and Ra�fi is the calculated value of Ra� when the

outer boundary is kept at f ¼ fi. The decay ratio r is

defined as

r ¼ ðRa�f3 � Ra�f2Þ=ðRa
�
f2
� Ra�f1Þ: ð24Þ

The whole solution procedure is described in the works

of Chen and Chen [28], Kim [29] and Chen et al. [30].

2.5. Results of stability analysis

The predicted values based on the above numerical

scheme constitute the stability curve, as shown in Fig. 2.

From this figure the stability criteria of the minimum

Ra� for the case of Pr ¼ 7 are obtained. In Table 1 the

present results are compared with those of Choi and

Kim [14]. The difference between two becomes smaller

with an increase in Pr. For other Pr the present stability
criteria are listed in Table 2.

For small Pr there are large differences between the

present stability criteria and Choi and Kim’s [14], as
Table 2

Numerical values of Ra�c and a�c for various Pr

Pr 0.01 0.1 0.7 1

Ra�c 2907 300.7 104.7 9

a�c 1.61 1.33 1.18 1
shown in Fig. 3. It seems evident that Ra�c increases with
a decrease in Pr and the Pr effect becomes pronounced

for Pr6 1. This trend can be shown clearly in Fig. 3. As

Pr ! 0 we can expect that the other mode of instability

such as wave mode may prevail and the present analysis

cannot be applied.

In Figs. 4 and 5, the water data of Choi [26] are

compared with the present critical conditions (Table 1):

xc ¼ 20:44Ra�3=4
q and ac ¼ 0:358Ra1=4q for Pr ¼ 7:

ð25Þ

It is known that in the thermal entrance region of

x6 0:05 the present predictions represent the experi-

mental data very well. For the present system experi-

mental data except those of water are not known. But

the present trend that a lower Pr fluid becomes more

stable with respect to regular longitudinal roll modes

looks reasonable, and the experimental results of Mau-

ghan and Incropera [9] for the case of plane Poiseuille

flow also show this trend. Even the present prediction

for the onset position is quite similar to that of Choi and

Kim [14], the present critical wave number is more

reasonable.
10 100 1
0.91 227.93 47.11 46.23

.15 1.23 0.88 0.87
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3. Heat transport

3.1. Turbulent heat transfer

Howard [19] assumed that turbulent heat transport

would be governed by a narrow boundary layer like a

conduction film of thickness dc near a heated surface,

independently of the whole fluid-layer depth. dc is usu-
ally called the conduction layer thickness. Further, he

suggested that the conduction period s� can be

approximated as the onset time of transient convection

sc, that is the conduction thickness dc may approximated

as the thermal penetration depth at the onset of buoy-

ancy-driven convection. Busse [20] modified Howard’s

concept such that heat transport resistances exist not

only near the heated bottom surface but also near the

cooling upper boundary. This so-called boundary-layer

instability model is featured in Fig. 6. As shown in Fig.

6, the temperature difference over the conduction layer

thickness is a half of the total temperature difference DT .
By Busse [20] the Nusselt number in the fully developed

turbulent state is given

Nu ¼ Qactual

Qconduction

¼ kDTd=dc
kDT=d

¼ 1

2

d
dc

¼ 1

2

Ra
2Rad

� �1=3

ð26Þ

where Rad ¼ gbDTdd
3=ðamÞ. Ra is the usual Rayleigh

number based on DT , Rad the Rayleigh number based on

the conduction thickness, and DTd the temperature dif-

ference over the conduction layer thickness. For the

uniformly heated system the above relationship can be

modified by using the relationship of Raq ¼ RaNu. Thus,
in the present system Eq. (26) is replaced by

Nu ¼ 1

2

Raq
Rad

� �1=4

for Raq ! 1 ð27Þ

Long [21] and Cheung [22] analyzed the above turbulent

heat transport and suggested the flowing relation:

Nu ¼ ARa1=3

½1� BðRaNuÞ�1=12�4=3
: ð28Þ

From above relation, it can be showed that the heat

transfer characteristics for Raq ! 1 would be inde-

pendent of the fluid-layer depth like Howard and Bus-
d

δ

δ

TL

TU

Turbulent Core Tc

∆T=TL-TU ∆Tδ=∆T/2

Fig. 6. Schematic diagram of the boundary-layer instability

model.



102 103 104 105 106
0

1

2

3

4

5

6

7

N
u

Raq

Choi's data [26]
Present correlation
Choi and Kim's correlation [14]

Fig. 7. Comparison of the present heat transfer correlation

with water data.

C.K. Choi et al. / International Journal of Heat and Mass Transfer 47 (2004) 2629–2636 2635
se’s concept. By using the relationship of Raq ¼ RaNu
and slight modification of Eq. (28) produces the fol-

lowing heat transfer correlation for the present uni-

formly heated system:

Nu ¼ 1þ
AðRa1=4q � 816:71=4Þ

1� BRa�1=12
q

for Raq P 816:7 ð29Þ

where the value of 816.7 is the minimum Rayleigh

number to mark buoyancy-driven convection. The

constants A and B should be determined by using

experimental data or theoretical relations. Therefore,

Eq. (26) is the limiting case of Eqs. (28) and (29) for

Raq ! 1.

Now, by extending the Howard’s concept to the

present problem we assume that the conduction-layer

thickness in the boundary-layer instability model could

be approximated by the thermal boundary-layer thick-

ness at the onset position of buoyancy-driven convec-

tion. Then from both the stability analysis results shown

in Table 1 and the basic temperature field the following

relations are obtained as a function of the critical posi-

tion xc for water with Pr ¼ 7:

Nu ¼ 0:0973Ra1=4q for Raq ! 1 ð30Þ

3.2. Heat transfer correlation

The heat transport with Raq near Raq ¼ 816:7 can be

estimated by weakly nonlinear analysis base the shape

assumption of Stuart [31] as

1

Nu
¼ 1� K

Raq;c
ðRaq � Raq;cÞ for Raq ! 816:7 ð31Þ

where K is the constant calculated by using profiles of

disturbances at Raq ¼ 816:7. The value of K for the

present system is obtained from the relation

K ¼

R 1

0
w1h1 dz

� �2

R 1

0
ðw1h1Þ2 dz

¼ 0:6722 ð32Þ

where w1 and h1 are the dimensionless velocity and

temperature disturbances at Raq ¼ 816:7, respectively.
For the uniformly heated plane Couette flow of water

a new heat transfer correlation for the whole range of

the Rayleigh number satisfying Eqs. (29)–(32) is ob-

tained with Pr ¼ 7 as

Nu ¼ 1þ
0:0980ðRa1=4q � 816:71=4Þ

1� 1:4345Ra�1=12
q

ð33Þ

The above prediction suggests the lower bounds of the

water data of Choi [26], as shown in Fig. 7. It is noted

that Nu 	 1 for Raq 6 816:7. This value corresponds to

that of thermally fully developed forced convection. It is

noted that by using the above procedure the corre-

sponding correlation can be generated for each Pr case.
4. Conclusion

The condition of the onset of regular longitudinal

vortex rolls in the thermal entrance region of plane

Couette flow heated uniformly from below has been

analyzed theoretically. The theoretical analysis was

conducted by using the propagation theory. Based on

the propagation theory and the momentary-instability

concept a new set of stability equations was derived and

solved numerically. The resulting prediction showed that

the critical Rayleigh number increases with a decrease in

Prandtl number. Based on the present stability criteria, a

new heat transfer correlation in mixed convection is

suggested. It is shown that these theoretical results agree

well with experimental data for water. Therefore it may

be stated that our propagation theory may be useful for

predicting the onset position of buoyancy-driven motion

in laminar mixed convection flow and also for deriving

the heat transport correlation in fully developed state as

a function of the Rayleigh number and the Prandtl

number. This study may be the complements of the re-

sults of Choi and Kim [14].
Acknowledgements

This work was partially supported by LG Chemical

Ltd., Seoul and T.J. Chung acknowledges the financial

support from the Brain Korea 21 Project of the Ministry

of Education.
References

[1] K.C. Chiu, F. Rosenberger, Mixed convection between

horizontal plates––I. Entrance effects, Int. J. Heat Mass

Transfer 30 (1987) 1645–1653.



2636 C.K. Choi et al. / International Journal of Heat and Mass Transfer 47 (2004) 2629–2636
[2] T.-F. Lin, Buoyancy driven vortex flow and thermal

structures in a very low Reynolds number mixed convective

gas flow through a horizontal channel, Int. J. Heat Fluid

Flow 24 (2003) 299–309.

[3] J.T. Lir, M.Y. Chang, T.-F. Lin, Vortex flow patterns near

critical state for onset of convection in air flow through a

bottom heated horizontal flat duct, Int. J. Heat Mass

Transfer 44 (2001) 705–719.

[4] A. Ozsunar, S. Baskaya, M. Sivrioglu, Experimental

investigation of mixed convection heat transfer in a

horizontal and inclined rectangular channel, Heat Mass

Transfer 38 (2002) 271–278.

[5] Y. Kamotani, S. Ostrach, Effect of thermal instability on

thermally developing laminar channel flow, Trans. ASME:

J. Heat Transfer 98 (1976) 62–66.

[6] E.J. Davis, C.K. Choi, Cellular convection with liquid-film

flow, J. Fluid Mech. 81 (1977) 565–592.

[7] Y. Kamotani, S. Ostrach, H. Miao, Convective heat

transfer augmentation in thermal entrance region by means

of thermal instability, Trans. ASME: J. Heat Transfer 101

(1979) 222–226.

[8] M.C. Kim, J.S. Baik, I.G. Hwang, D.-Y. Yoon, C.K. Choi,

Buoyancy-driven convection in plane Poiseuille flow,

Chem. Engng. Sci. 54 (1999) 619–632.

[9] J.R. Maughan, F.P. Incropera, Experiments on mixed

convection heat transfer for airflow in a horizontal and

inclined channel, Int. J. Heat Mass Transfer 30 (1987)

1307–1318.

[10] S. Hung, E.J. Davis, Gravitational instability in the

thermal entry region with liquid film flow, AIChE J. 20

(1974) 194–197.

[11] C.B. Shin, C.K. Choi, Thermal instability in plane Couette

flow heated from below, Korean J. Chem. Eng. 1 (1984)

83–88.

[12] C.K. Choi, C.B. Shin, S.T. Hwang, Thermal instabilities in

thermal entrance region of plane Couette flow heated

uniformly from below, in: Proceedings of the Eighth

International Heat Transfer Conference, vol. 3, San

Francisco, CA, 1986, pp. 1389–1394.

[13] C.K. Choi, M.C. Kim, Convective instability in the

thermal entrance region of plane Couette flow heated

uniformly from below, in: Proceedings of the Ninth

International Heat Transfer Conference, vol. 2, Jerusalem,

Israel, 1990, pp. 519–524.

[14] C.K. Choi, M.C. Kim, Buoyancy effects in plane Couette

flow heated uniformly from below, in: Proceedings of the

Tenth International Heat Transfer Conference, vol. 5,

Brighton, UK, 1994, pp. 453–458.

[15] M.C. Kim, T.J. Chung, C.K. Choi, The onset of convective

instability in the thermal entrance region of plane Poiseuille
flow heated uniformly from below, Int. J. Heat Mass

Transfer 46 (2003) 2629–2636.

[16] T.D. Foster, Stability of a homogeneous fluid cooled

uniformly from above, Phys. Fluids 8 (1965) 1249–

1257.

[17] E.J. Davis, C.K. Choi, Cellular convection with liquid-film

flow, J. Fluid Mech. 81 (1977) 565–592.

[18] S.F. Shen, Some considerations on the laminar stability of

time-dependent basic flows, J. Aerospace Sci. 28 (1961)

397–417.

[19] L.N. Howard, Convection at high Rayleigh number, in:

Proceedings of Eleventh International Congress on Ap-

plied Mechanics, M€unich, Germany, 1964, pp. 1109–

1115.

[20] F.B. Busse, On the stability of two-dimensional convection

in a layer heated from below, J. Math. Phys. 46 (1967) 140–

150.

[21] R.R. Long, The relation between Nusselt number and

Rayleigh number in turbulent thermal convection, J. Fluid

Mech. 73 (1976) 445–451.

[22] F.B. Cheung, Heat source-dirven thermal convection at

arbitrary Prandtl number, J. Fluid Mech. 97 (1980) 734–

758.

[23] V.S. Arpaci, Microscales of turbulent heat and mass

transfer correlations, Adv. Heat Transfer 30 (1997) 1–91.

[24] C.K. Choi, J.D. Lee, S.T. Hwang, J.S. Yoo, The analysis of

thermal instability and heat transfer prediction in a

horizontal fluid layer heated from below, in: Frontiers of

Fluid Mechanics, Pergamon Press, Oxford, 1988, pp. 1193–

1198.

[25] D.Y. Yoon, C.K. Choi, Thermal convection in a saturated

porous medium subject to isothermal heating, Korean J.

Chem. Engng. 6 (1989) 144–149.

[26] C.K. Choi, Thermal convection in the liquid film of a

stratified gas/liquid flow, Ph.D. thesis, Clarkson Univer-

sity, Potsdam, NY, 1976.

[27] B. Straughan, The Energy Method, Stability, and Nonlin-

ear Convection, Springer-Verlag, NY, 1992.

[28] K. Chen, M.M. Chen, Thermal instability of forced

convection boundary layers, Trans. ASME: J. Heat

Transfer 106 (1984) 284–289.

[29] M.C. Kim, The onset of natural convection and heat

transfer correlations in systems experiencing thermal

boundary layer characteristics, Ph.D. thesis, Seoul Na-

tional University, Seoul, Korea, 1992.

[30] K. Chen, M.M. Chen, C.W. Sohn, Thermal instability of

two-dimensional stagnation-point boundary layers,

J. Fluid Mech. 132 (1983) 49–63.

[31] J.T. Stuart, On cellular pattern in thermal convection,

J. Fluid Mech. 18 (1964) 481–498.


	Buoyancy effects in plane Couette flow heated uniformly from below with constant heat flux
	Introduction
	Stability analysis
	Basic flow and temperature fields
	Disturbance equations
	Propagation theory
	Solution method
	Results of stability analysis

	Heat transport
	Turbulent heat transfer
	Heat transfer correlation

	Conclusion
	Acknowledgements
	References


